Laursen and S. C. Hartman for the loan of pH stats and Professor L. Z. Zompa for providing us with a sample of tren.

Registry No. $[(en)_2Co^{III}(OH_2)_2]^{3+}$, 21247-59-6; $[(tn)_2Co^{III}(OH_2)_2]^{3+}$, 51286-38-5; $[(tren)Co^{III}(OH_2)_2]^{3+}$, 41884-78-0; $[(en)_2Co(CO_3)](ClO_4), 15155-12-1; [(tn)_2Co(CO_3)](ClO_4), 31188-$ 12-2; $[(tren)Co(CO_3)](ClO_4)$, 41593-06-0; $H_4P_2O_7$, 2466-09-3.

Supplementary Material Available: Figures 9-15, providing sample spectra, detailed results for pH 0-12 at both 1:1 and 2:1 molar ratios of (tn)₂Co^{III}(aq) to orthophosphate, and a summary of related literature data^{12,13} (7 pages). Ordering information is given on any current masthead page.

Contribution from the Departments of Chemistry, State University of New York at Buffalo, Buffalo, New York 14214, and University of Illinois, Urbana, Illinois 61801

Structural Studies on Polynuclear Osmium Carbonyl Hydrides. 15.¹ Preparation and X-ray Crystal Structure of $(\mu$ -H)Os₃(CO)₁₀ $(\mu$ -NHSO₂C₆H₄Me), a Complex with an $Os(\mu-H)(\mu-N)Os$ Bridge

MELVYN ROWEN CHURCHILL,*² FREDRICK J. HOLLANDER,*² JOHN R. SHAPLEY,*³ and JEROME B. KEISTER*3

Received October 10, 1979

The complex $(\mu$ -H)Os₃(CO)₁₀ $(\mu$ -NHSO₂C₆H₄Me) has been synthesized from $(\mu$ -H)₂Os₃(CO)₁₀ and MeC₆H₄SO₂N₃. This species crystallizes in the triclinic space group $P\bar{I}$ with a = 8.246 (1) Å, b = 8.668 (1) Å, c = 18.572 (3) Å, $\alpha = 89.92$ (1)°, $\beta = 98.61$ (1)°, $\gamma = 113.05$ (1)°, V = 1205.4 (2) Å³, $\rho_{calcd} = 2.82$ g cm⁻³ for mol wt 1021.95, and Z = 2. Diffraction data (4.5° $\leq 2\theta \leq 50^{\circ}$; Mo K α) were collected with a Syntex P_{21} diffractometer, and the structure was solved by standard Patterson, Fourier, and least-squares refinement techniques. The resulting discrepancy indices were $R_F = 4.0\%$ and R_{wF} = 2.9% for all 4276 reflections (none rejected) and $R_F = 3.2\%$ and $R_{wF} = 2.8\%$ for those 3786 data with $|F_0| > 3\sigma(|F_0|)$. The molecule contains a triangular arrangement of osmium atoms; Os(1) and Os(2) are each linked to three terminal carbonyl groups, while Os(3) is linked to four. Atoms Os(1) and Os(2) are additionally bridged by a hydride ligand (which was located and refined) and by a >NHSO₂C₆H₄Me ligand. Osmium-osmium bond lengths are Os(1)-Os(3) = 2.858 (1) Å and Os(2)-Os(3) = 2.847 (1) Å (unbridged) and Os(1)-Os(2) = 2.814 (1) Å (μ -H, μ -N bridged). Within the Os-(1)-H(br)-Os(2) system, interatomic paramters are Os(1)-H(br) = 1.91 (8) Å, Os(2)-H(br) = 1.96 (8) Å, and Os- $(1)-H(br)-Os(2) = 93.5 (34)^{\circ}$. Within the Os(1)-N-Os(2) system, parameters are Os(1)-N = 2.162 (7) Å, Os(2)-N = 2.145 (7) Å, and Os(1)-N-Os(2) = 81.6 (2)°.

Introduction

The unsaturated cluster compound $(\mu$ -H)₂Os₃(CO)₁₀ has been shown to react with certain diazo compounds RHC-- $N^+\equiv N$ (R = H⁴, CO₂Et⁵) with loss of dinitrogen to give the insertion products $(\mu$ -H)Os₃(CO)₁₀ $(\mu$ -CH₂R). These results prompted us to examine the interaction of $(\mu-H)_2Os_3(CO)_{10}$ with an analogous dipolar compound, an azide $RN^{-}-N^{+} \equiv N$. This article describes the characterization of the insertion product $(\mu$ -H)Os₃(CO)₁₀ $(\mu$ -NHSO₂C₆H₄Me) that results from reaction with *p*-toluenesulfonyl azide.

Experimental Section

 $Os_3(CO)_{12}$ was prepared by the method of Nyholm⁶ from osmium tetraoxide. The synthesis of $H_2Os_3(CO)_{10}$ is described by Kaesz et al.⁷ Tosyl azide was prepared by a literature procedure.⁸

Infrared spectra were obtained on a Perkin-Elmer 467 spectrophotometer. Proton NMR spectra were recorded on a Varian HA-100 spectrometer. Electron-impact mass spectra were obtained by Mr. Joe Wrona with a Varian MAT CH-5 instrument at 70 eV. Elemental analyses were performed at the University of Illinois by the microanalytical laboratory of the School of Chemical Sciences.

- (3) University of Illinois. (4) Calvert, R. B.; Shapley, J. R. J. Am. Chem. Soc. 1978, 100, 7726; 1978, 100, 6544; 1977, 99, 5225.

- (5) Keister, J. B.; Shapley, J. R. J. Am. Chem. Soc. 1976, 98, 1056.
 (6) Bradford, C. W.; Nyholm, R. S. Chem. Commun. 1967, 384.
 (7) Knox, S. A. R.; Koepke, J. W.; Andrews, M. A.; Kaesz, H. D. J. Am. Chem. Soc. 1975, 97, 3942.
 (8) Regitz, M.; Hocker, J.; Licchhegener, A. "Organic Synthesis"; Wiley:
- New York, 1973; Collect. Vol. V, p 179.

Table I. Experimental Data for the Diffraction Study of $(\mu-H)Os_3(CO)_{10}(\mu-NHSO_2C_6H_4Me)$

(A) Crystal Par	ameters at 25 °C ^a
a = 8.2462 (14) Å	V = 1205.4 (2) Å ³
b = 8.6681 (14) Å	Z = 2
c = 18.5723 (28) A	mol wt 1021.95
$\alpha = 89.923 (13)^{\circ}$	ρ (calcd) = 2.82 g cm ⁻³
$\beta = 98.614 (13)^{\circ}$	μ (calcd) = 168.6 cm ⁻¹
$\gamma = 113.046 (12)^{\circ}$	space group $P\overline{1}$

(B) Measurement of Intensity Data

radiation: Mo K α ($\overline{\lambda} = 0.710~730$ Å)

- monochromator: highly oriented graphite, $2\theta_{mono} = 12.2^{\circ}$, equatorial mode
- rflctns measd: +h, $\pm k$, $\pm l$
- 2θ range: 4.5-50.0°
- scan type: coupled θ (cryst)-2 θ (detector)
- scan speed: 3.0° /min in 2θ
- scan width: $[2\theta(Mo K\alpha_1) 0.85]^\circ \rightarrow [2\theta(Mo K\alpha_2) + 0.85]^\circ$
- bkgd measmt: stationary crystal-stationary counter at beginning
- and end of each scan, each for one-third of the total scan time std rflctns: 0,0,13, 263, and 403; these were measured after every
- 97 rflctns. No decay in intensity was observed
- rfletns collected: 4267 unique data

^a Unit cell parameters were derived from a least-squares fit to the setting angles at the unresolved Mo K $\overline{\alpha}$ components of 12 Friedel pairs of reflections well scattered in reciprocal space with 2θ values between 25 and 30° .

Synthesis of $(\mu$ -H)Os₃(CO)₁₀ $(\mu$ -NHSO₂C₆H₄Me). To a stirred solution of $(\mu$ -H)₂Os₃(CO)₁₀ (30 mg) in chloroform (5 mL) was added an excess (4 drops, ca. 60 mg) of p-toluenesulfonyl azide. After 24 h the bright yellow solution was evaporated to dryness, and the residue was extracted with a small amount of diethyl ether. This solution was cooled to -25 °C for several hours, and the yellow precipitate was collected. Recrystallization from dichloromethane and drying

0020-1669/80/1319-1272\$01.00/0 © 1980 American Chemical Society

For previous parts in this series, see the following. (a) Part 12: Churchill, M. R.; Lashewycz, R. A. Inorg. Chem. 1979, 18, 1926-30. (b) Part 13: Churchill, M. R.; Lashewycz, R. A. *Ibid*. 1979, *18*, 3261–7.
 (c) Part 14: Churchill, M. R.; Hollander, F. J. *Ibid*. 1980, *19*, 306–310.

SUNY at Buffalo.

under vacuum provided bright yellow crystals (14 mg, 39%). No other product was observed. IR (C₆H₁₂): ν (CO) 2110 (vw), 2078 (vs), 2060 (m), 2024 (vs), 2011 (m), 2004 (s), 1990 (w), 1974 (w) cm⁻¹ IR (CCl₄): ν (NH) 3325 (vw) cm⁻¹. Mass spectrum: $m/e \ 1027 \ (^{192}\text{Os},$ M⁺). ¹H NMR (CDCl₃, 25 °C): τ 2.22 (d, 2 H_a), 2.61 (d, 2 H_b), 4.20 (br, 1 H_c), 7.55 (s, 3 H_d), 25.31 (d, 1 H_c); $J_{ab} = 8.1$ Hz, $J_{ce} =$ 2.2 Hz. Anal. Calcd for C₁₇H₉NO₁₂SOs₃: C, 19.96; H, 0.89; N, 1.37; Os, 55.84. Found: C, 20.06; H, 0.89; N, 1.40; Os, 55.81.

Collection of X-ray Diffraction Data for $(\mu$ -H)Os₃ $(\mu$ -NHSO₂C₆H₄Me). The complex crystallizes as clear yellow prisms with well-developed faces. Several crystals were mounted and examined via precession photographs which revealed no symmetry other than the Friedel condition. The crystal selected for data collection was a triangular prism (triangular edge dimensions $0.10 \times 0.14 \times$ 0.13 mm and 0.20 mm in length); this was mounted on a glass fiber with GE varnish. The fiber was set into an aluminum pin with beeswax and was mounted on our Syntex $P2_1$ automated diffractometer with the long axis of the crystal aligned approximately along the ϕ axis of the goniometer. Crystal alignment, determination of the orientation matrix and accurate cell parameters, and data collection were all carried out as described previously.⁹ Details specific to the present analysis are given in Table I.

All crystallographic computations were performed by using our in-house Syntex XTL system, including the XTL interactive crystallographic program package¹⁰ as modified by our research group at SUNY at Buffalo. Data were corrected for absorption ($\mu = 168.6$ cm⁻¹) by the empirical method previously described.¹¹ Reflections used, their 2θ values, and their maximum-to-minimum intensity ratios were as follows: 006, 13.33°, 1.28:1; 006, 13.33°, 1.31:1; 018, 18.22°, 1.33:1; 018, 18.22°, 1.32:1; 0,0,11, 24.58°, 1.28:1; 0,0,11, 24.58°, 1.26:1; 0,0,13, 29.14°, 1.25:1; 0,1,15, 33.82°, 1.32:1; 1,1,16, 37.14°, 1.32:1.

Analysis of the standard reflections showed no evidence of decay. Data were converted to unscaled $|F_o|$ values, following correction for Lorentz and polarization effects. Any reflection with I < 0 was assigned a value of $|F_0| = 0$. The esd's, $\sigma_c(|F_0|)$, were based on counting statistics.

Solution and Refinement of the Structure. The analytical form^{12a} of the scattering factors for neutral osmium, sulfur, oxygen, nitrogen, carbon, and hydrogen were used throughout the analysis. Both the real and imaginary components of anomalous dispersion^{12b} were included for all nonhydrogen atoms. The function $\sum w(|F_o| - |F_c|)^2$ was minimized by least-squares refinement. Here the weight, w, is defined in eq 1; p, the "ignorance factor", was set to a value of 0.01.

$$w = [[\sigma_{\rm c}(|F_{\rm o}|)]^2 + (p|F_{\rm o}|)^2]^{-1}$$
(1)

Data were placed on an approximate absolute scale by means of a Wilson plot, which also yielded an overall temperature factor of $\bar{B} = 2.47 \text{ Å}^2$. A three-dimensional Patterson map was easily interpreted to yield the positions of the three independent osmium atoms. A difference Fourier synthesis ($R_F = 15.7\%$) revealed unambiguously the positions of all remaining nonhydrogen atoms. Full-matrix least-squares refinement of positional and anisotropic thermal parameters converged with $R_F = 4.2\%$, $R_{wF} = 3.3\%$, and GOF = 1.55 (307 parameters, 4267 data).

A difference Fourier synthesis revealed clearly the positions of all hydrogen atoms other than H(2). The positional parameters of these atoms were included in the least-squares refinement, H(2) being inserted in its idealized position (regular trigonal geometry about C(2), with $d(C-H) = 0.95 \text{ Å}).^{13}$

Inspection of the $|F_0|$ and $|F_c|$ values for the complete model showed that a correction for secondary extinction was necessary. (The worst disagreement was for the $1\overline{1}\overline{1}$ reflection, with $|F_c|/|F_o| = 1.19$.) The $|F_0|$ values of all reflections were now corrected for secondary extinction as shown in eq 2; the value of g, determined by a least-squares analysis of high-intensity reflections, was 1.86×10^{-7} .

$$|F_{\rm o}|_{\rm cor} = |F_{\rm o}|_{\rm uncor}(1.0 + gI_{\rm o})$$
⁽²⁾

- (10) Syntex A1L Operations Manual , and ed.; Syntex Analytical Instruments (now Nicolet XRD Division): Cupertino, CA; 1976.
 (11) Churchill, M. R.; Hollander, F. J. *Inorg. Chem.* 1978, 17, 1957.
 (12) "International Tables for X-Ray Crystallography"; Kynoch Press: Birmingham, England, 1974; Vol. 4: (a) pp 99-101; (b) pp 149-50.
 (13) Churchill, M. R. *Inorg. Chem.* 1973, 12, 1213.

Table II. Final Positional Parameters (with Esd's) for $(\mu$ -H)Os₃(CO)₁₀ $(\mu$ -NHSO₂C₆H₄Me)

	51 104	2 0 4 -		
atom	x	y	Z	<i>B</i> , Å ²
Os(1)	0.221 60 (4)	0.102 70 (4)	0.182 51 (2)	·····
Os(2)	0.482 97 (4)	0.393 99 (4)	0.260 13 (2)	
Os(3)	0.507 41 (4)	0.320 67 (4)	0.11372(2)	
S	0.3905 (3)	0.0317 (3)	0.347 89 (11)	
Ν	0.4352 (9)	0.1342 (9)	0.2718 (4)	
O(1)	0.2747 (7)	0.0865 (8)	0.3799 (3)	
O(2)	0.3378 (8)	-0.1437(8)	0.3293 (3)	
C(1)	0.6019 (11)	0.1080 (10)	0.4043 (4)	
C(2)	0.6321 (13)	0.2051(12)	0.4666 (5)	
C(3)	0.8012 (14)	0.2663 (12)	0.5098 (5)	
C(4)	0.9374 (13)	0.2300 (11)	0.4892 (5)	
C(5)	0.9017 (13)	0.1281 (13)	0.4258 (6)	
C(6)	0.7332 (14)	0.0667 (13)	0.3835 (5)	
C(7)	1.1166 (16)	0.2874 (16)	0.5374 (7)	
O(11)	-0.0462 (9)	0.1257 (9)	0.0562 (4)	
O(12)	-0.0853(8)	-0.1055 (9)	0.2626 (4)	
O(13)	0.2315 (9)	-0.1951 (9)	0.0998 (4)	
O(21)	0.5083 (9)	0.7361 (8)	0.2135 (4)	
O(22)	0.4025 (11)	0.4787 (10)	0.4066 (4)	
O(23)	0.8846 (9)	0.5161 (10)	0.2995 (4)	
O(31)	0.2447 (10)	0.4905 (9)	0.0699 (4)	
O(32)	0.7339 (9)	0.1305 (9)	0.1800(4)	
O(33)	0.8304 (10)	0.6433(10)	0.0988 (4)	
O(34)	0.4229 (9)	0.1414(9) 0.1197(11)	-0.0371(4)	
C(11)	0.0561 (11)	0.1197 (11)	0.1041 (5)	
C(12)	0.0341 (11)	-0.0230 (11)	0.2367 (5)	
C(13)	0.2257(11)	-0.0863(12)	0.1319 (5)	
C(21)	0.4959 (11)	0.6087 (12)	0.2309 (5)	
C(22)	0.4294 (12)	0.4369 (12)	0.3547 (5)	
C(23)	0.7369 (13)	0.4735 (12)	0.2855 (5)	
C(31)	0.3403 (13)	0.4261 (11)	0.0864 (5)	
C(32)	0.6519 (12)	0.2004(12)	0.1545 (5)	
C(33)	0.7107 (13)	0.5228 (13)	0.1047 (5)	
C(34)	0.4531 (11)	0.2062(11)	0.0187 (5)	
H(br)	0.227 (10)	0.308 (9)	0.222 (4)	4.0
H(1)	0.506 (13)	0.100 (13)	0.254 (5)	6.0
H(2)	0.556 (13)	0.245 (12)	0.478 (5)	6.0
H(3)	0.812(12)	0.345 (12)	0.548 (5)	6.0
H(5)	1.004 (13)	0.133 (13)	0.412 (5)	6.0
H(6)	0.713 (13)	0.008 (12)	0.341 (5)	6.0
H(7A)	1.191 (15)	0.231 (15)	0.516 (6)	8.0
H(7B)	1.088 (14)	0.230 (14)	0.593 (6)	8.0
H(7C)	1.173 (16)	0.381 (15)	0.531 (7)	8.0

Four cycles of full-matrix least-squares refinement led to final convergence with $R_F = 4.0\%$, $R_{wF} = 2.9\%$, and GOF = 1.39 for 334 parameters refined against all 4276 reflections (none rejected). For comparision, we may note that the residuals for those 3786 data with $|F_{o}| > 3\sigma_{o}(|F_{o}|)$ were $R_{F} = 3.2\%$, $R_{wF} = 2.8\%$, and GOF = 1.43. A final difference Fourier synthesis showed no significant features. The function $\sum w(|F_0| - |F_c|)^2$ showed no abnormal dependency on $|F_{0}|$, $(\sin \theta)/\lambda$, sequence number, and identity or parity of crystallographic indices; the weighting scheme is thus satisfactory.

Final positional and thermal parameters are collected in Tables II and III.

Results and Discussion

The crystal consists of discrete ordered units of $(\mu$ -H)- $Os_3(CO)_{10}(\mu$ -NHSO₂C₆H₄Me), which are mutually separated by normal van der Waals distances. The closest two contacts involving nonhydrogen atoms are $O(13) \cdots O(31)(x, y-1, z)$ = 2.829 (11) Å and O(11)···O(34)(-x, -y, -z) = 3.029 (11) Å. The atomic labeling scheme is illustrated in Figures 1 and 2; a stereoscopic view of the molecule appears as Figure 3. Interatomic distances and angles are collected in Tables IV and V, while principal planes appear in Table VI.

As shown in Figure 4, the triosmium cluster approximates an isosceles triangle in which the two nonbridged osmiumosmium bond lengths are Os(1)-Os(3) = 2.858 (1) Å and Os(2)-Os(3) = 2.847 (1) Å, while the μ -hydrido- μ -(substituted amide)-bridged Os(1)-Os(2) linkage is reduced to 2.814 (1) Å. [For comparison we note that the average osmium-osmium

⁽⁹⁾ Churchill, M. R.; Lashewycz, R. A.; Rotella, F. J. Inorg. Chem. 1977, 16, 265.

⁽¹⁰⁾ "Syntex XTL Operations Manual", 2nd ed.; Syntex Analytical Instru-

Table III. Final Anisotropic Thermal Parameters (A^2) for $(\mu$ -H)Os₃ $(CO)_{10}(\mu$ -NHSO₂C₆H₄Me)^a

atom	<i>B</i> ₁₁	B 22	B 33	B ₁₂	B ₁₃	B 2 3
Os(1)	2.257 (13)	2.392 (14)	2.831 (14)	0.725 (11)	0.588 (10)	0.057 (11)
Os(2)	2.888 (14)	2.735 (15)	2.411 (14)	0.823 (11)	0.457 (11)	-0.223(11)
Os(3)	2.846 (14)	2.656 (15)	2.519 (14)	0.712(11)	0.800 (11)	0.071(11)
S	3.46 (9)	3.80 (11)	3.01 (9)	1.39 (8)	1.10 (8)	0.79 (8)
Ν	2.8 (3)	3.6 (3)	3.0 (3)	1.3 (3)	0.61 (24)	0.5 (3)
O(1)	3.9 (3)	5.4 (3)	3.9 (3)	2.3 (3)	1.68 (23)	1.11 (25)
O(2)	4.6 (3)	3.9 (3)	4.4 (3)	1.38 (25)	1.01 (25)	0.70 (25)
C(1)	3.4 (4)	3.6 (4)	2.6 (4)	1.6 (3)	0.1 (3)	0.4 (3)
C(2)	5.2 (5)	4.6 (5)	2.7 (4)	2.9 (4)	0.9 (4)	-0.0 (3)
C(3)	6.0 (6)	4.3 (5)	2.6 (4)	2.4 (4)	0.5 (4)	-0.1(3)
C(4)	4.9 (5)	3.3 (4)	3.9 (5)	1.4 (4)	-0.1(4)	0.5 (4)
C(5)	4.1 (5)	5.6 (6)	4.4 (5)	2.7 (4)	0.3 (4)	0.0 (4)
C(6)	5.4 (5)	5.5 (5)	2.9 (4)	3.0 (4)	-0.0(4)	-0.9(4)
C(7)	5.3 (6)	5.2 (6)	6.1 (7)	1.5 (5)	-0.6(5)	1.3 (5)
O(11)	4.2 (3)	6.9 (4)	4.8 (4)	2.3 (3)	-0.5(3)	0.8 (3)
O(12)	3.7 (3)	5.9 (4)	6.0 (4)	0.7 (3)	2.2 (3)	1.8 (3)
O(13)	5.5 (4)	5.2 (4)	8.3 (5)	2.8 (3)	0.1 (3)	-2.4(4)
O(21)	5.5 (4)	2.4 (3)	6.1 (4)	1.0 (3)	0.5 (3)	-0.2(3)
O(22)	9.4 (5)	6.7 (4)	3.4 (3)	3.8 (4)	2.0(3)	-0.8(3)
O(23)	3.3 (3)	7.3 (5)	7.8 (5)	0.5 (3)	-0.8(3)	-1.5(4)
O(31)	6.4 (4)	5.0 (4)	4.9 (4)	3.4 (3)	0.1 (3)	0.4 (3)
O(32)	5.3 (4)	7.2 (4)	5.3(4)	4.3 (3)	1.4 (3)	1.3 (3)
O(33)	5.2 (4)	5.5 (4)	7.3 (5)	-1.6(3)	2.1 (3)	0.4 (3)
O(34)	5.8 (4)	6.2 (4)	3.9 (3)	1.1 (3)	0.7 (3)	-1.8(3)
C(11)	2.9 (4)	3.5 (4)	4.3 (5)	1.1 (3)	0.4 (3)	-0.5(3)
C(12)	3.3 (4)	3.7 (4)	4.3 (5)	1.5 (3)	1.1 (3)	0.1(4)
C(13)	3.1 (4)	4.2 (5)	4.6 (5)	1.5 (4)	0.7 (3)	0.4 (4)
C(21)	3.2 (4)	3.8 (5)	3.7 (4)	0.7 (3)	0.4 (3)	-0.7(4)
C(22)	4.1 (4)	4.3 (5)	3.7 (5)	1.5 (4)	0.5 (4)	0.0 (4)
C(23)	4.0 (5)	3.7 (5)	4.7 (5)	1.0 (4)	-0.3(4)	-0.7(4)
C(31)	4.9 (5)	3.0 (4)	3.9 (4)	1.1 (4)	1.0 (4)	0.3 (3)
C(32)	4.2 (5)	4.4 (5)	3.5 (4)	1.8 (4)	1.4 (4)	0.1(4)
C(33)	4.7 (5)	5.2 (5)	3.2 (4)	1.7 (4)	1.4 (4)	-0.4(4)
C(34)	3.3 (4)	3.7 (4)	4.1 (5)	0.8 (3)	0.9 (3)	0.6 (4)

^a The anisotropic thermal parameters enter the equation for the calculated structure factor in the form $\exp\left[-0.25(h^2a^{*2}B_{11} + k^2b^{*2}B_{22} + l^2c^{*2}B_{33} + 2hka^*b^*B_{12} + 2hla^*c^*B_{13} + 2klb^*c^*B_{23})\right]$.

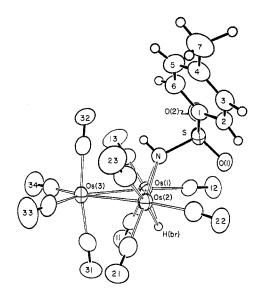


Figure 1. $(\mu$ -H)Os₃(CO)₁₀(μ -NHSO₂C₆H₄Me) molecule, showing the atomic labels. Oxygen atoms of carbonyl groups and carbon atoms of tolyl groups are given by numbers only.

bond length in $Os_3(CO)_{12}$, the parent carbonyl, is 2.877 (3) Å.¹⁴]

The net *shortening* of the dibridged $Os(\mu-H)(\mu-N)Os$ linkage relative to the nonbridged osmium-osmium bonds is characteristic of $Os(\mu-H)(\mu-X)Os$ systems containing relatively small X atoms (the covalent radius of nitrogen is ~0.70 Å¹⁵).

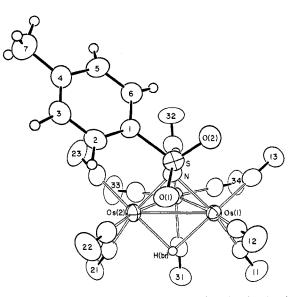


Figure 2. $(\mu$ -H)Os₃(CO)₁₀ $(\mu$ -NHSO₂C₆H₄Me) molecule, showing atom labels and the conformation about the N–S bond.

We note that the corresponding values for $Os(\mu-H)(\mu-C)Os$ systems ($r(C) = 0.772 \text{ Å}^{15}$) are 2.785 (2) Å in (μ -H)Os₃-(CO)₁₀(μ -CHCH=NEt₂)¹⁶ and 2.800 (1) Å in (μ -H)Os₃-(CO)₁₀(μ -CHCH₂PMe₂Ph).¹⁷ The effects of the nature of

Pauling, L. "Nature of the Chemical Bond", 3rd ed.; Cornell University Press: Ithaca, NY, 1960; Table 7-2, p 224.
 Part 11: Churchill, M. R.; Lashewycz, R. A. Inorg. Chem. 1979, 18, article 11: Churchill, M. R.; Lashewycz, R. A. Inorg. Chem. 1979, 18,

⁽¹⁴⁾ Part 1: Churchill, M. R.; DeBoer, B. G. Inorg. Chem. 1977, 16, 878. 848.

Polynuclear Osmium Carbonyl Hydrides

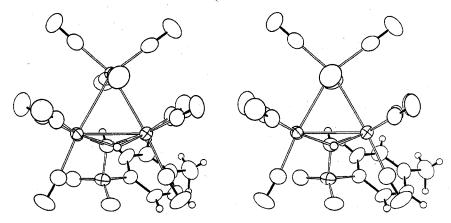


Figure 3. Stereoscopic diagram of the $(\mu$ -H)Os₃(CO)₁₀ $(\mu$ -NHSO₂C₆H₄Me) molecule.

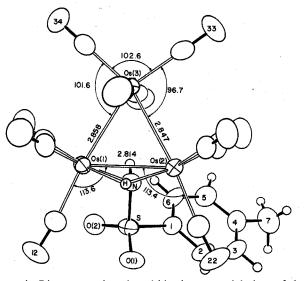


Figure 4. Distances and angles within the equatorial plane of the $(\mu-H)Os_3(CO)_{10}(\mu-NHSO_2C_6H_4Me)$ molecule.

X on dimensions within $Os(\mu-H)(\mu-X)Os$ bridges have been summarized previously.^{1a,b}

The μ_2 -hydride ligand was located directly in the present analysis, and its positional parameters were refined. The Os(1)-H(br)-Os(2) angle is 93.5 (34)°, and the individual osmium-hydrogen distances are Os(1)-H(br) = 1.91 (8) Å and Os(2)-H(br) = 1.96 (8) Å.

The μ -NHSO₂C₆H₄Me ligand occupies a symmetrically bridging site with Os(1)–N = 2.162 (7) Å, Os(2)–N = 2.145 (7) Å, and Os(1)–N–Os(2) = 81.6 (2)°. The sulfonate group takes up an exo configuration on the nitrogen atom, leaving the N–H system in such an orientation as to permit weak hydrogen bonding with O(32) (see Figure 1). Appropriate dimensions are as follows: N···O(32) = 3.208 (11) Å, N–H(1) = 0.85 (11) Å, H(1)···O(32) = 2.43 (11) Å, N–H(1)···O(32) = 153 (9)°. The substitutents on the nitrogen and sulfur atoms provide an approximately staggered conformation about the N–S bond (cf. Figure 2). The plane of the phenyl group makes an angle of 52.67° with the triosmium system.

The $(\mu$ -H)Os₃(CO)₁₀(μ -N) portion of the molecule has approximate C_s symmetry. It is interesting to note that the equatorial carbonyl ligands do not lie strictly in the triosmium plane but are mainly displaced toward the bridging hydride ligand. Thus, the nitrogen atom lies -1.549 (8) Å and the hydride ligand lies +1.21 (8) Å from the triosmium plane; displacements of oxygen atoms of the equatorial carbonyl

(17) Part 2: Churchill, M. R.; DeBoer, B. G. Inorg. Chem. 1977, 16, 1141.

Table IV. Interatomic Distances (A) within the $(\mu$ -H)Os₃(CO)₁₀(μ -NHSO₂C₆H₄Me) Molecule^a

# 11)003(00)18(# 1	11100206114110) historeale	
A	. Osmium–Osn	nium Distances	
Os(1)-Os(2)	2.814 (1)	Os(1)-Os(3)	2.858 (1)
00(1) 00(1)		Os(2) - Os(3)	2.847 (1)
		05(2) 05(0)	2.017(1)
	B. Osmium-B	ridge Atoms	
Os(1)-H(br)	1.91 (8)	Os(1)-N	2.162 (7)
Os(2)-H(br)	1.96 (8)	Os(2)-N	2.145 (7)
0-(1) 0(11)	C. Osmium		0.005 (7)
Os(1)-C(11)	1.889 (10)	Os(1)-O(11)	3.035 (7)
Os(1)-C(12)	1.932 (9)	Os(1) - O(12)	3.069 (7)
Os(1)-C(13)	1.905 (10)	Os(1)-O(13)	3.040 (8)
Os(2)-C(21)	1.905 (10)	Os(2)-O(21)	3.025 (6)
Os(2)-C(22)	1.945 (10)	Os(2) - O(22)	3.051 (7)
Os(2)-C(23)	1.912 (11)	Os(2) - O(23)	3.026 (8)
Os(3)-C(31)	1.941 (11)	Os(3) - O(31)	3.080 (8)
Os(3) - C(32)	1. 94 5 (10)	Os(3)-O(32)	3.072(8)
Os(3)-C(33)	1.922 (11)	Os(3)-O(33)	3.062 (8)
Os(3) - C(34)	1.928 (10)	Os(3)-O(34)	3.053(7)
	D. Cashan	0	
0(11) 0(11)	D. Carbon		
C(11)-O(11)	1.146 (12)	C(23)-O(23)	1.114 (14)
C(12)-O(12)	1.141 (12)	C(31)-O(31)	1.140 (13)
C(13)-O(13)	1.136 (13)	C(32)-O(32)	1.128 (13)
C(21)-O(21)	1.120 (12)	C(33)-O(33)	1.141 (14)
C(22)-O(22)	1.113 (12)	C(34)-O(34)	1.125 (12)
E Dista	nces within u-N	HSO₂C₄H₄Me Li	heen
S-N	1.679 (7)	N-H(1)	0.85 (11)
S-O(1)	1.420 (7)	IV II(1)	0.05 (11)
S-O(2)	1.434 (6)		
S-C(1)	1.769 (9)		
C(1)-C(2)	1.363 (12)	C(2)-H(2)	0.88 (11)
C(1) = C(2) C(2) = C(3)	1.399 (15)		
		C(3)-H(3)	0.96 (10)
C(3)-C(4)	1.383 (16)	C(5)-H(5)	0.90 (11)
C(4)-C(5)	1.395 (14)	C(6)-H(6)	0.90 (10)
C(5)-C(6)	1.388 (16)	C(7)-H(7A)	1.04 (13)
C(6)-C(1)	1.370 (15)	C(7)-H(7B)	1.16 (11)
C(4)-C(7)	1.504 (18)	C(7)-H(7C)	0.78 (12)
	F. Intramolecu	alar Contacts	
$H(1) \cdot \cdot \cdot O(32)$	2.43 (11)	$O(1) \cdot \cdot \cdot O(12)$	3.245 (10)
$H(1) \cdot \cdot \cdot C(32)$	2.34 (10)	$O(1) \cdot \cdot \cdot O(22)$	3.155 (10)
N···O(32)	3.208 (11)	$O(1) \cdot \cdot \cdot C(12)$	2.976 (11)
$H(br) \cdot \cdot \cdot C(31)$	2.87 (8)	$O(1) \cdot \cdot \cdot C(22)$	2.865 (11)
(01)			2.000 (11)
	G. Average		
Os-C	1.922 [19] ^b	C-H	0.95 [12]
Os-O	3.051 [19]	C-C(phenyl)	1.383 [14]
C-0	1.130 [12]		

^a Estimated standard deviations of the least significant digit(s) are given in parentheses as calculated from the esd's of the atom parameters. ^b Esd calculated by $[\Sigma(x_i - \overline{x})^2/(n-1)]^{1/2}$.

ligands are as follows: +0.436 (9) Å for O(22), +0.151 (7) Å for O(12), +0.244 (8) Å for O(33), and -0.019 (8) for O(34). This results from two factors: (i) direct steric interaction of the sulfonate group with some equatorial carbonyl

Table V.	Intramolecular Angles (Deg) for	
$(\mu$ -H)Os ₃ ($CO)_{10}(\mu$ -NHSO ₂ C ₆ H ₄ Me)	

	$(\mu - H)Os_3(CO)_{10}(\mu - NHSO_2C_6H_4Me)$					
	A. Os-	08-08				
Os(1)-Os(2)-Os(3)	60.63 (1)	Os(3)-Os(1)-Os(2)	60.27 (1)			
Os(2) - Os(2) - Os(1)	59.10(1)	00(0) 00(1) 00(2)	000127 (17)			
05(2) 05(0) 05(1)						
	B. Os-Os-					
Os(2)-Os(1)-C(11)	120.3 (3)	Os(3)-Os(2)-C(21)	87.4 (3)			
-C(12)	113.6 (3)	-C(23)	90.0 (3)			
-C(13)	134.9 (3)	Os(1)-Os(3)-C(31)	81.9 (3)			
Os(3)-Os(1)-C(11)	89.5 (3)	-C(32)	89.1 (3)			
-C(13)	89.9 (3)	-C(34)	101.6 (3)			
Os(1)-Os(2)-C(21)	119.3 (3)	Os(2) - Os(3) - C(31)	85.4 (3)			
-C(22)	113.4 (3)	-C(32)	86.8 (3)			
-C(23)	133.2 (3)	-C(33)	96.7 (3)			
0(23)	155.2 (5)	0(55)	<i>J</i> U . <i>T</i> (<i>J</i>)			
	C. Os-Os-C	(Transoid)				
Os(3) - Os(1) - C(12)	173.4 (3)	Os(1)-Os(3)-C(33)	155.5 (3)			
Os(3)-Os(2)-C(22)	171.5 (3)	Os(2)-Os(3)-C(34)	160.7 (3)			
		<u></u>				
	D. Os-C-					
Os(1)-C(11)-O(11)	178.3 (8)	Os(2)-C(21)-O(21)	178.1 (9)			
Os(1)-C(12)-O(12)	173.5 (8)	Os(2)-C(22)-O(22)	172.4 (9)			
Os(1)-C(13)-O(13)	177.5 (9)	Os(2)-C(23)-O(23)	178.2 (9)			
$O_{s(3)}-C(31)-O(31)$	178.7 (9)	Os(3)-C(33)-O(33)	179.4 (9)			
$O_{S}(3)-C(32)-O(32)$	178.0 (9)	$O_{s}(3)-C(34)-O(34)$	179.0 (9)			
03(3)-0(32)-0(32)	170.0 (7)	03(3)-0(34)-0(34)	1/2.0 (9)			
	E. C-	Os-C				
C(11)-Os(1)-C(12)	92.2 (4)	C(31)-Os(3)-C(32)	170.2 (4)			
-C(13)	89.6 (4)	-C(33)	92.9 (4)			
C(12)-Os(1)-C(13)	96.5 (4)	-C(34)	92.6 (4)			
C(21)-Os(2)-C(22)	91.0 (4)	C(32)-Os(3)-C(33)	93.8 (4)			
-C(23)	92.2 (4)	-C(34)	92.9 (4)			
C(22)-Os(2)-C(23)	98.4 (4)	C(33)-Os(3)-C(34)	102.6 (4)			
$C(22)^{-}Os(2)^{-}C(23)$	J0.4 (4)	C(33) = Os(3) = C(34)	102.0 (4)			
	F. Os-O					
Os(3)-Os(1)-N	83.0 (2)	Os(3)-Os(1)-H(br)	83.7 (24)			
Os(3)-Os(2)-N	83.6 (2)	Os(3)-Os(2)-H(br)	83.1 (23)			
	0.00	Dult.				
N O-(1) ((11)	G. C-Os		1 (0, 4, (4))			
N-Os(1)-C(11)	169.2 (3)	N-Os(2)-C(21)	168.4 (4)			
-C(12)	94.4 (3)	-C(22)	96.9 (4)			
-C(13)	98.2 (4)	-C(23)	95.1 (4)			
-C(13) H(br)-Os(1)-C(11)	98.2 (4) 86.3 (24)	-C(23) H(br)-Os(2)-C(21)	95.1 (4) 87.3 (23)			
-C(13) H(br)-Os(1)-C(11) -C(12)	98.2 (4) 86.3 (24) 90.1 (24)	-C(23) H(br)-Os(2)-C(21) -C(22)	95.1 (4) 87.3 (23) 88.5 (23)			
-C(13) H(br)-Os(1)-C(11)	98.2 (4) 86.3 (24)	-C(23) H(br)-Os(2)-C(21)	95.1 (4) 87.3 (23)			
-C(13) H(br)-Os(1)-C(11) -C(12)	98.2 (4) 86.3 (24) 90.1 (24) 172.4 (24)	-C(23) H(br)-Os(2)-C(21) -C(22) -C(23)	95.1 (4) 87.3 (23) 88.5 (23)			
-C(13) H(br)-Os(1)-C(11) -C(12) -C(13)	98.2 (4) 86.3 (24) 90.1 (24) 172.4 (24) H. Os-B	-C(23) H(br)-Os(2)-C(21) -C(22) -C(23) ridge-Os	95.1 (4) 87.3 (23) 88.5 (23) 173.1 (23)			
-C(13) H(br)-Os(1)-C(11) -C(12) -C(13) Os(1)-N-Os(2)	98.2 (4) 86.3 (24) 90.1 (24) 172.4 (24) H. Os-B. 81.6 (2)	-C(23) H(br)-Os(2)-C(21) -C(22) -C(23) ridge-Os Os(1)-H(br)-Os(2)	95.1 (4) 87.3 (23) 88.5 (23) 173.1 (23) 93.5 (34)			
-C(13) H(br)-Os(1)-C(11) -C(12) -C(13) Os(1)-N-Os(2) I. Other	98.2 (4) 86.3 (24) 90.1 (24) 172.4 (24) H. Os-B. 81.6 (2)	-C(23) H(br)-Os(2)-C(21) -C(22) -C(23) ridge-Os Os(1)-H(br)-Os(2) HSO ₂ C ₆ H ₄ Me Ligand	95.1 (4) 87.3 (23) 88.5 (23) 173.1 (23) 93.5 (34)			
-C(13) H(br)-Os(1)-C(11) -C(12) -C(13) Os(1)-N-Os(2)	98.2 (4) 86.3 (24) 90.1 (24) 172.4 (24) H. Os-B. 81.6 (2)	-C(23) H(br)-Os(2)-C(21) -C(22) -C(23) ridge-Os Os(1)-H(br)-Os(2)	95.1 (4) 87.3 (23) 88.5 (23) 173.1 (23) 93.5 (34)			
-C(13) H(br)-Os(1)-C(11) -C(12) -C(13) Os(1)-N-Os(2) I. Other Os(1)-N-S	98.2 (4) 86.3 (24) 90.1 (24) 172.4 (24) H. Os-B 81.6 (2) Angles in μ-N 120.1 (4)	-C(23) H(br)-Os(2)-C(21) -C(22) -C(23) ridge-Os Os(1)-H(br)-Os(2) HSO ₂ C ₆ H ₄ Me Ligand C(5)-C(4)-C(7)	95.1 (4) 87.3 (23) 88.5 (23) 173.1 (23) 93.5 (34) 120.4 (10)			
-C(13) H(br)-Os(1)-C(11) -C(12) -C(13) Os(1)-N-Os(2) I. Other Os(1)-N-S Os(2)-N-S	98.2 (4) 86.3 (24) 90.1 (24) 172.4 (24) H. Os-B 81.6 (2) Angles in μ -N 120.1 (4) 125.3 (4)	$-C(23) \\ H(br)-Os(2)-C(21) \\ -C(22) \\ -C(23) \\ ridge-Os \\ Os(1)-H(br)-Os(2) \\ HSO_2C_6H_4Me Ligand \\ C(5)-C(4)-C(7) \\ C(4)-C(5)-C(6) \\ \end{array}$	95.1 (4) 87.3 (23) 88.5 (23) 173.1 (23) 93.5 (34) 120.4 (10) 120.6 (10)			
-C(13) H(br)-Os(1)-C(11) -C(12) -C(13) Os(1)-N-Os(2) I. Other Os(1)-N-S Os(2)-N-S Os(2)-N-S Os(1)-N-H(1)	98.2 (4) 86.3 (24) 90.1 (24) 172.4 (24) H. Os-B 81.6 (2) Angles in μ -N 120.1 (4) 125.3 (4) 105.1 (71)	-C(23) H(br)-Os(2)-C(21) -C(22) -C(23) ridge-Os Os(1)-H(br)-Os(2) HSO ₂ C ₆ H ₄ Me Ligand C(5)-C(4)-C(7) C(4)-C(5)-C(6) C(5)-C(6)-C(1)	95.1 (4) 87.3 (23) 88.5 (23) 173.1 (23) 93.5 (34) 120.4 (10) 120.6 (10) 119.3 (10)			
-C(13) H(br)-Os(1)-C(11) -C(12) -C(13) Os(1)-N-Os(2) I. Other Os(1)-N-S Os(2)-N-S Os(2)-N-S Os(1)-N-H(1) Os(2)-N-H(1)	98.2 (4) 86.3 (24) 90.1 (24) 172.4 (24) H. Os-B 81.6 (2) Angles in μ -N 120.1 (4) 125.3 (4) 105.1 (71) 115.7 (71)	$\begin{array}{c} -C(23) \\ H(br)-Os(2)-C(21) \\ -C(22) \\ -C(23) \\ ridge-Os \\ Os(1)-H(br)-Os(2) \\ HSO_2C_6H_4Me \ Ligand \\ C(5)-C(4)-C(7) \\ C(4)-C(5)-C(6) \\ C(5)-C(6)-C(1) \\ H(2)-C(2)-C(1) \end{array}$	95.1 (4) 87.3 (23) 88.5 (23) 173.1 (23) 93.5 (34) 120.4 (10) 120.6 (10) 119.3 (10) 124 (7)			
-C(13) H(br)-Os(1)-C(11) -C(12) -C(13) Os(1)-N-Os(2) I. Other Os(1)-N-S Os(2)-N-S Os(2)-N-S Os(1)-N-H(1) Os(2)-N-H(1) S-N-H(1)	98.2 (4) 86.3 (24) 90.1 (24) 172.4 (24) H. Os-B 81.6 (2) Angles in μ -N 120.1 (4) 125.3 (4) 105.1 (71) 115.7 (71) 106.3 (71)	$-C(23)$ $H(br)-Os(2)-C(21)$ $-C(22)$ $-C(23)$ ridge-Os $Os(1)-H(br)-Os(2)$ $HSO_{2}C_{6}H_{4}Me \text{ Ligand}$ $C(5)-C(4)-C(7)$ $C(4)-C(5)-C(6)$ $C(5)-C(6)-C(1)$ $H(2)-C(2)-C(1)$ $-C(3)$	95.1 (4) 87.3 (23) 88.5 (23) 173.1 (23) 93.5 (34) 120.4 (10) 120.6 (10) 119.3 (10) 124 (7) 116 (7)			
$\begin{array}{c} -C(13) \\ H(br)-Os(1)-C(11) \\ -C(12) \\ -C(13) \\ \\ Os(1)-N-Os(2) \\ \hline I. Other \\ Os(1)-N-S \\ Os(2)-N-S \\ Os(2)-N-S \\ Os(1)-N-H(1) \\ Os(2)-N-H(1) \\ S-N-H(1) \\ N-S-O(1) \\ \end{array}$	98.2 (4) 86.3 (24) 90.1 (24) 172.4 (24) H. Os-B 81.6 (2) Angles in μ -N 120.1 (4) 125.3 (4) 105.1 (71) 115.7 (71) 106.3 (71) 108.1 (4)	$-C(23)$ $H(br)-Os(2)-C(21)$ $-C(22)$ $-C(23)$ ridge-Os $Os(1)-H(br)-Os(2)$ $HSO_{2}C_{6}H_{4}Me \text{ Ligand}$ $C(5)-C(4)-C(7)$ $C(4)-C(5)-C(6)$ $C(5)-C(6)$ $C(5)-C(6)$ $C(5)-C(1)$ $H(2)-C(2)-C(1)$ $-C(3)$ $H(3)-C(3)-C(2)$	95.1 (4) 87.3 (23) 88.5 (23) 173.1 (23) 93.5 (34) 120.4 (10) 120.6 (10) 119.3 (10) 124 (7) 116 (7) 112 (6)			
$\begin{array}{c} -C(13) \\ H(br)-Os(1)-C(11) \\ -C(12) \\ -C(13) \\ \\ Os(1)-N-Os(2) \\ \hline I. Other \\ Os(1)-N-S \\ Os(2)-N-S \\ Os(2)-N-S \\ Os(1)-N-H(1) \\ Os(2)-N-H(1) \\ S-N-H(1) \\ N-S-O(1) \\ -O(2) \\ \end{array}$	98.2 (4) 86.3 (24) 90.1 (24) 172.4 (24) H. Os-B 81.6 (2) Angles in μ -N 120.1 (4) 105.1 (71) 105.3 (4) 105.7 (71) 106.3 (71) 108.1 (4) 107.5 (4)	$\begin{array}{c} -C(23) \\ H(br)-Os(2)-C(21) \\ -C(22) \\ -C(23) \\ ridge-Os \\ Os(1)-H(br)-Os(2) \\ HSO_2C_6H_4Me \ Ligand \\ C(5)-C(4)-C(7) \\ C(4)-C(5)-C(6) \\ C(5)-C(6)-C(1) \\ H(2)-C(2)-C(1) \\ -C(3) \\ H(3)-C(3)-C(2) \\ -C(4) \end{array}$	95.1 (4) 87.3 (23) 88.5 (23) 173.1 (23) 93.5 (34) 120.4 (10) 120.6 (10) 119.3 (10) 124 (7) 116 (7) 112 (6) 127 (6)			
$\begin{array}{c} -C(13) \\ H(br)-Os(1)-C(11) \\ -C(12) \\ -C(13) \\ \\ Os(1)-N-Os(2) \\ \hline I. Other \\ Os(1)-N-S \\ Os(2)-N-S \\ Os(2)-N-S \\ Os(1)-N-H(1) \\ Os(2)-N-H(1) \\ S-N-H(1) \\ N-S-O(1) \\ -O(2) \\ -C(1) \\ \end{array}$	98.2 (4) 86.3 (24) 90.1 (24) 172.4 (24) H. Os-B. 81.6 (2) Angles in μ-N 120.1 (4) 125.3 (4) 105.1 (71) 115.7 (71) 106.3 (71) 108.1 (4) 107.5 (4) 102.5 (4)	$\begin{array}{c} -C(23) \\ H(br)-Os(2)-C(21) \\ -C(22) \\ -C(23) \\ ridge-Os \\ Os(1)-H(br)-Os(2) \\ HSO_2C_6H_4Me \ Ligand \\ C(5)-C(4)-C(7) \\ C(4)-C(5)-C(6) \\ C(5)-C(6)-C(1) \\ H(2)-C(2)-C(1) \\ H(2)-C(2)-C(1) \\ -C(3) \\ H(3)-C(3)-C(2) \\ -C(4) \\ H(5)-C(5)-C(4) \end{array}$	95.1 (4) 87.3 (23) 88.5 (23) 173.1 (23) 93.5 (34) 120.4 (10) 120.6 (10) 119.3 (10) 124 (7) 116 (7) 112 (6) 127 (6) 111 (7)			
$\begin{array}{c} -C(13) \\ H(br)-Os(1)-C(11) \\ -C(12) \\ -C(13) \\ \\ Os(1)-N-Os(2) \\ I. Other \\ Os(1)-N-S \\ Os(2)-N-S \\ Os(2)-N-S \\ Os(1)-N-H(1) \\ Os(2)-N-H(1) \\ S-N-H(1) \\ N-S-O(1) \\ -O(2) \\ -C(1) \\ O(1)-S-O(2) \\ \end{array}$	98.2 (4) 86.3 (24) 90.1 (24) 172.4 (24) H. Os-B 81.6 (2) Angles in μ -N 120.1 (4) 125.3 (4) 105.1 (71) 115.7 (71) 106.3 (71) 108.1 (4) 107.5 (4) 102.5 (4) 119.8 (4)	$\begin{array}{c} -C(23) \\ H(br)-Os(2)-C(21) \\ -C(22) \\ -C(23) \\ ridge-Os \\ Os(1)-H(br)-Os(2) \\ HSO_2 C_6 H_4 Me Ligand \\ C(5)-C(4)-C(7) \\ C(4)-C(5)-C(6) \\ C(5)-C(6)-C(1) \\ H(2)-C(2)-C(1) \\ -C(3) \\ H(3)-C(3)-C(2) \\ -C(4) \\ H(5)-C(5)-C(4) \\ -C(6) \end{array}$	95.1 (4) 87.3 (23) 88.5 (23) 173.1 (23) 93.5 (34) 120.4 (10) 120.6 (10) 119.3 (10) 124 (7) 116 (7) 112 (6) 127 (6) 111 (7) 126 (7)			
$\begin{array}{c} -C(13) \\ H(br)-Os(1)-C(11) \\ -C(12) \\ -C(13) \\ \\ Os(1)-N-Os(2) \\ I. Other \\ Os(1)-N-S \\ Os(2)-N-S \\ Os(2)-N-S \\ Os(1)-N-H(1) \\ Os(2)-N-H(1) \\ S-N-H(1) \\ N-S-O(1) \\ -O(2) \\ -C(1) \\ O(1)-S-O(2) \\ -C(1) \\ \end{array}$	98.2 (4) 86.3 (24) 90.1 (24) 172.4 (24) H. Os-B 81.6 (2) Angles in μ -N 120.1 (4) 125.3 (4) 105.1 (71) 115.7 (71) 106.3 (71) 108.1 (4) 107.5 (4) 102.5 (4) 119.8 (4) 108.8 (4)	$\begin{array}{c} -C(23) \\ H(br)-Os(2)-C(21) \\ -C(22) \\ -C(23) \\ ridge-Os \\ Os(1)-H(br)-Os(2) \\ HSO_2C_6H_4Me \ Ligand \\ C(5)-C(4)-C(7) \\ C(4)-C(5)-C(6) \\ C(5)-C(6)-C(1) \\ H(2)-C(2)-C(1) \\ -C(3) \\ H(3)-C(3)-C(2) \\ -C(4) \\ H(5)-C(5)-C(4) \\ -C(6) \\ H(6)-C(6)-C(5) \end{array}$	95.1 (4) 87.3 (23) 88.5 (23) 173.1 (23) 93.5 (34) 120.4 (10) 120.6 (10) 119.3 (10) 124 (7) 116 (7) 112 (6) 127 (6) 111 (7) 126 (7) 120 (7)			
$\begin{array}{c} -C(13) \\ H(br)-Os(1)-C(11) \\ -C(12) \\ -C(13) \\ \end{array}$ $Os(1)-N-Os(2) \\ I. Other \\ Os(1)-N-S \\ Os(2)-N-S \\ Os(2)-N-S \\ Os(1)-N-H(1) \\ Os(2)-N-H(1) \\ S-N-H(1) \\ N-S-O(1) \\ -O(2) \\ -C(1) \\ O(1)-S-O(2) \\ -C(1) \\ O(2)-S-C(1) \\ \end{array}$	98.2 (4) 86.3 (24) 90.1 (24) 172.4 (24) H. Os-B 81.6 (2) Angles in μ -N 120.1 (4) 125.3 (4) 105.1 (71) 115.7 (71) 106.3 (71) 108.1 (4) 107.5 (4) 102.5 (4) 119.8 (4) 108.8 (4)	$\begin{array}{c} -C(23) \\ H(br)-Os(2)-C(21) \\ -C(22) \\ -C(23) \\ \end{array}$ ridge-Os Os(1)-H(br)-Os(2) \\ HSO_2C_6H_4Me Ligand \\ C(5)-C(4)-C(7) \\ C(4)-C(5)-C(6) \\ C(5)-C(6)-C(1) \\ H(2)-C(2)-C(1) \\ -C(3) \\ H(3)-C(3)-C(2) \\ -C(4) \\ H(5)-C(5)-C(4) \\ H(6)-C(6)-C(5) \\ -C(1) \end{array}	95.1 (4) 87.3 (23) 88.5 (23) 173.1 (23) 93.5 (34) 120.4 (10) 120.6 (10) 119.3 (10) 124 (7) 116 (7) 112 (6) 127 (6) 111 (7) 126 (7) 120 (7)			
$\begin{array}{c} -C(13) \\ H(br)-Os(1)-C(11) \\ -C(12) \\ -C(13) \\ \\ Os(1)-N-Os(2) \\ \\ I. Other \\ Os(1)-N-S \\ Os(2)-N-S \\ Os(2)-N-S \\ Os(1)-N-H(1) \\ Os(2)-N-H(1) \\ S-N-H(1) \\ N-S-O(1) \\ -O(2) \\ -C(1) \\ O(1)-S-O(2) \\ -C(1) \\ O(2)-S-C(1) \\ S-C(1)-C(2) \\ \end{array}$	98.2 (4) 86.3 (24) 90.1 (24) 172.4 (24) H. Os-B 81.6 (2) Angles in μ -N 120.1 (4) 125.3 (4) 105.1 (71) 115.7 (71) 106.3 (71) 108.1 (4) 107.5 (4) 107.5 (4) 108.8 (4) 108.8 (4) 120.5 (7)	$-C(23)$ $H(br)-Os(2)-C(21)$ $-C(22)$ $-C(23)$ ridge-Os $Os(1)-H(br)-Os(2)$ $HSO_2C_6H_4Me Ligand$ $C(5)-C(4)-C(7)$ $C(4)-C(5)-C(6)$ $C(5)-C(6)-C(1)$ $H(2)-C(2)-C(1)$ $-C(3)$ $H(3)-C(3)-C(2)$ $-C(4)$ $H(5)-C(5)-C(4)$ $H(6)-C(6)-C(5)$ $-C(1)$ $C(4)-C(7)-H(7A)$	95.1 (4) 87.3 (23) 88.5 (23) 173.1 (23) 93.5 (34) 120.4 (10) 120.6 (10) 119.3 (10) 124 (7) 116 (7) 112 (6) 127 (6) 111 (7) 126 (7) 120 (7) 120 (7) 120 (7) 108 (7)			
$\begin{array}{c} -C(13) \\ H(br)-Os(1)-C(11) \\ -C(12) \\ -C(13) \\ \\ Os(1)-N-Os(2) \\ \hline I. Other \\ Os(1)-N-S \\ Os(2)-N-S \\ Os(2)-N-S \\ Os(1)-N-H(1) \\ Os(2)-N-H(1) \\ S-N-H(1) \\ N-S-O(1) \\ -O(2) \\ -C(1) \\ O(1)-S-O(2) \\ -C(1) \\ O(2)-S-C(1) \\ O(2)-S-C(1) \\ S-C(1)-C(2) \\ -C(6) \\ \end{array}$	98.2 (4) 86.3 (24) 90.1 (24) 172.4 (24) H. Os-B 81.6 (2) Angles in μ -N 120.1 (4) 125.3 (4) 105.1 (71) 115.7 (71) 106.3 (71) 108.1 (4) 107.5 (4) 102.5 (4) 108.8 (4) 120.5 (7) 118.0 (7)	$-C(23)$ $H(br)-Os(2)-C(21)$ $-C(22)$ $-C(23)$ ridge-Os $Os(1)-H(br)-Os(2)$ $HSO_2C_6H_4Me Ligand$ $C(5)-C(4)-C(7)$ $C(4)-C(5)-C(6)$ $C(5)-C(6)-C(1)$ $H(2)-C(2)-C(1)$ $-C(3)$ $H(3)-C(3)-C(2)$ $-C(4)$ $H(5)-C(5)-C(4)$ $-C(6)$ $H(6)-C(6)-C(5)$ $-C(1)$ $C(4)-C(7)-H(7A)$ $-H(7B)$	95.1 (4) 87.3 (23) 88.5 (23) 173.1 (23) 93.5 (34) 120.4 (10) 120.6 (10) 119.3 (10) 124 (7) 116 (7) 112 (6) 127 (6) 111 (7) 126 (7) 120 (7) 120 (7) 108 (7) 106 (6)			
$\begin{array}{c} -C(13) \\ H(br)-Os(1)-C(11) \\ -C(12) \\ -C(13) \\ \\ \\ Os(1)-N-Os(2) \\ \\ \hline \\ I. Other \\ Os(1)-N-S \\ Os(2)-N-S \\ Os(2)-N-S \\ Os(1)-N-H(1) \\ Os(2)-N-H(1) \\ S-N-H(1) \\ N-S-O(1) \\ -O(2) \\ -C(1) \\ O(1)-S-O(2) \\ -C(1) \\ O(1)-S-O(2) \\ -C(1) \\ O(2)-S-C(1) \\ S-C(1)-C(2) \\ -C(6) \\ C(2)-C(1)-C(6) \\ \end{array}$	98.2 (4) 86.3 (24) 90.1 (24) 172.4 (24) H. Os-B. 81.6 (2) Angles in μ -N 120.1 (4) 125.3 (4) 105.1 (71) 106.3 (71) 108.1 (4) 107.5 (4) 102.5 (4) 119.8 (4) 108.8 (4) 120.5 (7) 118.0 (7) 121.4 (9)	$\begin{array}{c} -C(23) \\ H(br)-Os(2)-C(21) \\ -C(22) \\ -C(23) \\ ridge-Os \\ Os(1)-H(br)-Os(2) \\ HSO_2C_6H_4Me \ Ligand \\ C(5)-C(4)-C(7) \\ C(4)-C(5)-C(6) \\ C(5)-C(6)-C(1) \\ H(2)-C(2)-C(1) \\ H(3)-C(3)-C(2) \\ -C(4) \\ H(5)-C(5)-C(4) \\ -C(6) \\ H(6)-C(6)-C(5) \\ -C(1) \\ C(4)-C(7)-H(7\ A) \\ -H(7\ B) \\ -H(7\ C) \end{array}$	95.1 (4) 87.3 (23) 88.5 (23) 173.1 (23) 93.5 (34) 120.4 (10) 120.6 (10) 119.3 (10) 124 (7) 116 (7) 112 (6) 127 (6) 111 (7) 126 (7) 120 (7) 120 (7) 120 (7) 108 (7) 106 (6) 109 (10)			
$\begin{array}{c} -C(13) \\ H(br)-Os(1)-C(11) \\ -C(12) \\ -C(13) \\ \\ \\ Os(1)-N-Os(2) \\ \\ I. Other \\ \\ Os(2)-N-S \\ Os(2)-N-S \\ Os(2)-N-H(1) \\ Os(2)-N-H(1) \\ S-N-H(1) \\ N-S-O(1) \\ -O(2) \\ -C(1) \\ O(1)-S-O(2) \\ -C(1) \\ O(1)-S-O(2) \\ -C(1) \\ O(2)-S-C(1) \\ S-C(1)-C(2) \\ -C(6) \\ C(2)-C(1)-C(6) \\ C(1)-C(2)-C(3) \\ \end{array}$	98.2 (4) 86.3 (24) 90.1 (24) 172.4 (24) H. Os-B 81.6 (2) Angles in μ -N 120.1 (4) 125.3 (4) 105.1 (71) 106.3 (71) 108.1 (4) 107.5 (4) 102.5 (4) 108.8 (4) 108.8 (4) 108.8 (4) 108.8 (4) 108.8 (4) 108.8 (4) 108.8 (7) 118.0 (7) 121.4 (9) 119.5 (9)	$\begin{array}{c} -C(23) \\ H(br)-Os(2)-C(21) \\ -C(22) \\ -C(23) \\ \end{array}$ ridge-Os Os(1)-H(br)-Os(2) \\ HSO_2C_6H_4Me Ligand \\ C(5)-C(4)-C(7) \\ C(4)-C(5)-C(6) \\ C(5)-C(6)-C(1) \\ H(2)-C(2)-C(1) \\ -C(3) \\ H(3)-C(3)-C(2) \\ -C(4) \\ H(5)-C(5)-C(4) \\ -C(6) \\ H(6)-C(6)-C(5) \\ -C(1) \\ C(4)-C(7)-H(7A) \\ -H(7B) \end{array}	95.1 (4) 87.3 (23) 88.5 (23) 173.1 (23) 93.5 (34) 120.4 (10) 120.6 (10) 119.3 (10) 124 (7) 116 (7) 112 (6) 127 (6) 111 (7) 126 (7) 120 (7) 120 (7) 120 (7) 108 (7) 106 (6) 109 (10) 107 (9)			
$\begin{array}{c} -C(13) \\ H(br)-Os(1)-C(11) \\ -C(12) \\ -C(13) \\ \end{array}$ $Os(1)-N-Os(2) \\ I. Other \\ Os(1)-N-S \\ Os(2)-N-S \\ Os(2)-N-S \\ Os(1)-N-H(1) \\ Os(2)-N-H(1) \\ S-N-H(1) \\ N-S-O(1) \\ -O(2) \\ -C(1) \\ O(1)-S-O(2) \\ -C(1) \\ O(1)-S-O(2) \\ -C(1) \\ O(2)-S-C(1) \\ S-C(1)-C(2) \\ -C(6) \\ C(2)-C(1)-C(6) \\ C(1)-C(2)-C(3) \\ C(2)-C(3)-C(4) \\ \end{array}$	98.2 (4) 86.3 (24) 90.1 (24) 172.4 (24) H. Os-B. 81.6 (2) Angles in μ -N 120.1 (4) 125.3 (4) 105.1 (71) 106.3 (71) 108.1 (4) 107.5 (4) 102.5 (4) 119.8 (4) 108.8 (4) 120.5 (7) 118.0 (7) 121.4 (9)	$\begin{array}{c} -C(23) \\ H(br)-Os(2)-C(21) \\ -C(22) \\ -C(23) \\ ridge-Os \\ Os(1)-H(br)-Os(2) \\ HSO_2C_6H_4Me Ligand \\ C(5)-C(4)-C(7) \\ C(4)-C(5)-C(6) \\ C(5)-C(6)-C(1) \\ H(2)-C(2)-C(1) \\ -C(3) \\ H(3)-C(3)-C(2) \\ -C(4) \\ H(5)-C(5)-C(4) \\ -C(6) \\ H(6)-C(6)-C(5) \\ -C(1) \\ C(4)-C(7)-H(7A) \\ -H(7B) \\ -H(7C) \\ H(7A)-C(7)-H(7B) \\ -H(7C) \\ \end{array}$	95.1 (4) 87.3 (23) 88.5 (23) 173.1 (23) 93.5 (34) 120.4 (10) 120.6 (10) 119.3 (10) 124 (7) 116 (7) 112 (6) 127 (6) 111 (7) 126 (7) 120 (7) 120 (7) 120 (7) 108 (7) 106 (6) 109 (10)			
$\begin{array}{c} -C(13) \\ H(br)-Os(1)-C(11) \\ -C(12) \\ -C(13) \\ \\ \\ Os(1)-N-Os(2) \\ \\ I. Other \\ \\ Os(2)-N-S \\ Os(2)-N-S \\ Os(2)-N-H(1) \\ Os(2)-N-H(1) \\ S-N-H(1) \\ N-S-O(1) \\ -O(2) \\ -C(1) \\ O(1)-S-O(2) \\ -C(1) \\ O(1)-S-O(2) \\ -C(1) \\ O(2)-S-C(1) \\ S-C(1)-C(2) \\ -C(6) \\ C(2)-C(1)-C(6) \\ C(1)-C(2)-C(3) \\ \end{array}$	98.2 (4) 86.3 (24) 90.1 (24) 172.4 (24) H. Os-B 81.6 (2) Angles in μ -N 120.1 (4) 125.3 (4) 105.1 (71) 106.3 (71) 108.1 (4) 107.5 (4) 102.5 (4) 108.8 (4) 108.8 (4) 108.8 (4) 108.8 (4) 108.8 (4) 108.8 (4) 108.8 (7) 118.0 (7) 121.4 (9) 119.5 (9)	$\begin{array}{c} -C(23) \\ H(br)-Os(2)-C(21) \\ -C(22) \\ -C(23) \\ ridge-Os \\ Os(1)-H(br)-Os(2) \\ HSO_2C_6H_4Me \ Ligand \\ C(5)-C(4)-C(7) \\ C(4)-C(5)-C(6) \\ C(5)-C(6)-C(1) \\ H(2)-C(2)-C(1) \\ H(2)-C(2)-C(1) \\ H(3)-C(3)-C(2) \\ -C(4) \\ H(5)-C(5)-C(4) \\ -C(6) \\ H(6)-C(6)-C(5) \\ -C(1) \\ C(4)-C(7)-H(7A) \\ -H(7B) \\ -H(7C) \\ H(7A)-C(7)-H(7B) \\ \end{array}$	95.1 (4) 87.3 (23) 88.5 (23) 173.1 (23) 93.5 (34) 120.4 (10) 120.6 (10) 119.3 (10) 124 (7) 116 (7) 112 (6) 127 (6) 111 (7) 126 (7) 120 (7) 120 (7) 120 (7) 108 (7) 106 (6) 109 (10) 107 (9)			
$\begin{array}{c} -C(13) \\ H(br)-Os(1)-C(11) \\ -C(12) \\ -C(13) \\ \end{array}$ $Os(1)-N-Os(2) \\ I. Other \\ Os(1)-N-S \\ Os(2)-N-S \\ Os(2)-N-S \\ Os(1)-N-H(1) \\ Os(2)-N-H(1) \\ S-N-H(1) \\ N-S-O(1) \\ -O(2) \\ -C(1) \\ O(1)-S-O(2) \\ -C(1) \\ O(1)-S-O(2) \\ -C(1) \\ O(2)-S-C(1) \\ S-C(1)-C(2) \\ -C(6) \\ C(2)-C(1)-C(6) \\ C(1)-C(2)-C(3) \\ C(2)-C(3)-C(4) \\ \end{array}$	98.2 (4) 86.3 (24) 90.1 (24) 172.4 (24) H. Os-B 81.6 (2) Angles in μ -N 120.1 (4) 125.3 (4) 105.1 (71) 106.3 (71) 108.1 (4) 107.5 (4) 102.5 (4) 108.8 (7) 121.4 (9) 119.5 (9) 120.3 (10)	$\begin{array}{c} -C(23) \\ H(br)-Os(2)-C(21) \\ -C(22) \\ -C(23) \\ ridge-Os \\ Os(1)-H(br)-Os(2) \\ HSO_2C_6H_4Me Ligand \\ C(5)-C(4)-C(7) \\ C(4)-C(5)-C(6) \\ C(5)-C(6)-C(1) \\ H(2)-C(2)-C(1) \\ -C(3) \\ H(3)-C(3)-C(2) \\ -C(4) \\ H(5)-C(5)-C(4) \\ -C(6) \\ H(6)-C(6)-C(5) \\ -C(1) \\ C(4)-C(7)-H(7A) \\ -H(7B) \\ -H(7C) \\ H(7A)-C(7)-H(7B) \\ -H(7C) \\ \end{array}$	95.1 (4) 87.3 (23) 88.5 (23) 173.1 (23) 93.5 (34) 120.4 (10) 120.6 (10) 119.3 (10) 124 (7) 116 (7) 112 (6) 127 (6) 111 (7) 126 (7) 120 (7) 120 (7) 120 (7) 108 (7) 106 (6) 109 (10) 107 (9) 99 (11)			

groups (O(1)···C(22) = 2.865 (11) Å, O(1)···(22) = 3.155 (10) Å, O(1)···C(12) = 2.976 (11) Å, O(1)···O(12) = 3.245 (10) Å) and (ii) the smaller cone angle of space taken up by the bridging hydride ligand (vis à vis bridging nitrogen ligand; see Figure 1).

The ten carbonyl groups are in five distinct chemical environments. While the range of osmium-carbonyl distances is relatively small (1.889 (10)–1.945 (10) Å), they can, to some extent, be broken down into classes on the basis of their chemical environment. The shortest pairs are Os(1)-C(11) = 1.889 (10) Å and Os(2)-C(21) = 1.905 (10) Å (trans to

Table VI. Principal Planes (and Atomic Deviations Therefrom) and Torsional and Dihedral Angles in the $(\mu$ -H)Os₃(CO)₁₀(μ -NHSO₂C₆H₄Me) Molecule^a

	2 - 8 4		
atom	dev, Å	atom	dev, Å
	A. Triosmi	um Plane	
-0.773	7X + 0.5402Y - 0	0.3310Z + 1.529	99 = 0
Os(1)*	0.000		0.146 (11)
$Os(2)^*$	0.000		0.244 (8)
Os(3)*	0.000	,	0.017 (10)
C(12)	0.079 (10)		0.019 (8)
O(12)	0.151 (7)	N -	1.549 (8)
C(22)	0.210 (10)	H(br)	1.21 (8)
O(22)	0.436 (9)		
	B. C_2Os_2	N Plane	
	3X + 0.0797Y - 0		98 = 0
Os(1)*	0.0000 (3)	Os(3) 2	2.3345 (3)
Os(2)*	0.0002 (4)		
N*	0.046 (7)	-	
C(11)*	0.012(10)		0.020 (7)
C(21)*	0.067 (10)	O(21)	0.136 (7)
	-	₂ H Plane	
	$\partial X + 0.5304Y - 0$		
Os(1)*	0.0000 (3)	Os(3) 2	2.0723 (3)
Os(2)*	0.0000 (3)		
H(br)*	0.21 (7)	0/1 0	
C(13)*	0.036 (10)		0.103 (8)
C(23)*	-0.035 (10)	O(23) -(0.057 (8)
	D. Pheny		
	5X + 0.8504Y - 0		
C(1)*	0.008 (8)		0.073 (13)
C(2)*	-0.001 (9)		0.043 (2)
C(3)*	-0.008(10)		0.034 (6)
C(4)*	0.009 (9)).942 (6)
C(5)*	-0.002(11)	N 1	1.554 (7)
C(6)*	-0.007 (10)		
	E. Torsion:	al Angles	
atoms	angle, deg	atoms	angle, deg
Os(1)-N-S-		N-S-C(1)-C(2	2) 113.5
—	F. Dihedra	l Angles	
planes	angle, deg		ngle, deg
A/B	109.80	B/C	126.83
A/C	123.37	A/D	52.67

^a Atoms marked with an asterisk were assigned weights = $1/\sigma^2$. All other atoms were given zero weight in the calculation. ^b Orthonormal coordinates (Å).

N) and Os(1)–C(13) = 1.905 (10) Å and Os(2)–C(23) = 1.912 (11) Å (trans to H); the longest pair, Os(3)–C(31) and Os(3)–C(32) [1.941 (11) and 1.945 (10) Å], involve mutually trans axial carbonyl groups on Os(3); the remaining two pairs [Os(1)–C(12) = 1.932 (9) Å and Os(2)–C(22) = 1.945 (10) Å, Os(3)–C(33) = 1.922 (11) Å and Os(3)–C(34) = 1.928 (10) Å] are trans to osmium atoms. In accordance with this we note that the longest osmium…oxygen distances are Os-(3)…O(31) = 3.080 (8) Å and Os(3)…O(32) = 3.072 (8) Å, i.e., those associated with the mutually trans carbonyl groups on Os(3).

Carbon-oxygen distances are all reasonable, ranging from 1.113 (12) to 1.146 (12) Å, and the Os-C-O systems are all close to linear, with angles ranging from 172.4 (9) to 179.4 (9)°.

The presence of two semiaxial bridging ligands across the Os(1)-Os(2) bond causes some asymmetry in the disposition of carbonyl groups within the equatorial plane. Thus, the Os(2)-Os(1)-C(12) and Os(1)-Os(2)-C(22) angles [113.6 (3) and 113.4 (3)°] are some 12–16° larger than the analogous angles at Os(3), i.e., Os(1)-Os(3)-C(34) and Os(2)-Os-

(3)-C(33) [101.6 (3) and 96.7 (3)°].

Acknowledgment. This work was supported by the National Science Foundation (Grant No. CHE77-04981, to M.R.C., and No. CHE75-14460, to J.R.S).

Registry No. $(\mu$ -H)Os₃(CO)₁₀ $(\mu$ -NHSO₂C₆H₄Me), 73017-56-8;

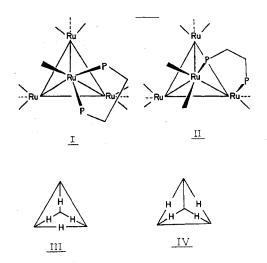
 $(\mu-H)_2Os_3(CO)_{10}$, 41766-80-7; MeC₆H₄SO₂N₃, 941-55-9.

Supplementary Material Available: A table of data-processing formulas and a listing of observed and calculated structure factor amplitudes (21 pages). Ordering information is given on any current masthead page.

Contribution from the Departments of Chemistry, State University of New York at Buffalo, Buffalo, New York 14214, and University of Illinois, Urbana, Illinois 61801

Synthesis, Crystal Structure, and Dynamic Behavior of Tetra- μ -hydrido- μ -[1,2-bis(diphenylphosphino)ethane]-decacarbonyltetraruthenium, an Isomer of (μ -H)₄Ru₄(CO)₁₀(diphos) with a *Bridging* diphos Ligand^{1,2}

MELVYN ROWEN CHURCHILL,*^{3a} ROMANA A. LASHEWYCZ, ^{3a} JOHN R. SHAPLEY,*^{3b,c} and STEVEN I. RICHTER^{3b}


Received November 2, 1979

In the presence of trimethylamine oxide the substitution of $(\mu$ -H)₄Ru₄(CO)₁₂ by 1,2-bis(diphenylphosphino)ethane (diphos) occurs rapidly at room temperature and leads to $(\mu-H)_4 Ru_4(CO)_{10}(\mu-diphos)$ as the major product. Upon being heated, this compound (isomer II) rearranges to the previously characterized compound $(\mu-H)_4Ru_4(CO)_{10}(diphos)$ (isomer I). Isomer II crystallizes in the centrosymmetric monoclinic space group $P2_1/c$ with a = 16.845 (3) Å, b = 14.644 (2) Å, c = 17.469(3) Å, $\beta = 116.48$ (1)°, $\rho(\text{obsd}) = 1.865$ (10) g cm⁻³ and $\rho(\text{calcd}) = 1.872$ g cm⁻³ for V = 3857 Å³, mol wt 1086.85, and Z = 4. Diffraction data were collected with Mo K α radiation on a Syntex $P2_1$ diffractometer, and the structure was solved by conventional methods, using the Syntex XTL system. The final discrepancy indices were $R_F = 5.9\%$ and $R_{wF} = 4.6\%$ for those 2446 reflections with $|F_0| > \sigma(F_0)$. All atoms, including the four bridging hydrides, were located directly. Positional parameters of the hydride ligands were refined, the resulting Ru-(μ -H) bond lengths averaging 1.70 ± 0.12 Å and the Ru-(μ -H)-Ru bond angles averaging 124 ± 9°. The hydrido-bridged ruthenium-ruthenium vectors range from 2.923 (2) to 3.048 (2) Å, while the nonhydrido-bridged Ru-Ru bonds are 2.779 (2) and 2.782 (2) Å. The diphos ligand takes up a bridging position between Ru(1) and Ru(2), the two ruthenium-phosphorus bond lengths being 2.356 (4) and 2.335 (5) Å. The $(\mu-H)_4Ru_4$ core of the molecule takes up the asymmetric (idealized C_s symmetry) form, as found in $(\mu-H)_4Ru_4$ core of the molecule takes up the asymmetric (idealized C_s symmetry) form, as found in $(\mu-H)_4Ru_4$ core of the molecule takes up the asymmetric (idealized C_s symmetry) form, as found in $(\mu-H)_4Ru_4$ core of the molecule takes up the asymmetric (idealized C_s symmetry) form, as found in $(\mu-H)_4Ru_4$ core of the molecule takes up the asymmetric (idealized C_s symmetry) form, as found in $(\mu-H)_4Ru_4$ core of the molecule takes up the asymmetric (idealized C_s symmetry) form, as found in $(\mu-H)_4Ru_4$ core of the molecule takes up the asymmetric (idealized C_s symmetry) form, as found in $(\mu-H)_4Ru_4$ core of the molecule takes up the asymmetric (idealized C_s symmetry) form, as found in $(\mu-H)_4Ru_4$ core of the molecule takes up the asymmetric (idealized C_s symmetry) form, as found in $(\mu-H)_4Ru_4$ core of the molecule takes up the asymmetric (idealized C_s symmetry) form, as found in $(\mu-H)_4Ru_4$ core of the molecule takes up the asymmetric (idealized C_s symmetry) form, as found in $(\mu-H)_4Ru_4$ core of the molecule takes up the asymmetric (idealized C_s symmetry) form, as found in $(\mu-H)_4Ru_4$ core of the molecule takes up the asymmetric (idealized C_s symmetry) form, as found in $(\mu-H)_4Ru_4$ core of the molecule takes up the asymmetric (idealized C_s symmetric (idealized C H)₄Ru₄(CO)₁₀(diphos) (isomer I), rather than the symmetric (D_{2d}) configuration found in other H₄Ru₄L₁₂ species. The hydride ligands in $(\mu-H)_4Ru_4(CO)_{10}(\mu-diphos)$ are fluxional. Complete equilibration is evident at room temperature (τ 27.3, triplet, J = 3 Hz). Various stages of the equilibration are observable at lower temperatures, but a static spectrum was not achieved even at -131 °C. Spectral changes below -70 °C can be interpreted in terms of edge-to-edge movement of one hydride ligand ($\Delta G^* = 7.2 \text{ kcal/mol}$) together with conformational changes in the backbone of the diphos ligand $(\Delta G^* = 9.1 \text{ kcal/mol}).$

Introduction

We have previously reported the crystal structure and dynamic ¹H NMR spectra of $(\mu$ -H)₄Ru₄(CO)₁₀(diphos).^{2,4} The X-ray study showed that the diphos ligand chelates to one ruthenium atom (see I) and that the $(\mu-H)_4Ru_4$ core of the molecule adopts configuration III (idealized C_s symmetry) rather than the more symmetrical configuration IV (idealized D_{2d} symmetry) inferred for $(\mu$ -H)₄Ru₄(CO)₁₂, $(\mu$ -H)₄Ru₄- $(CO)_{11}[P(OMe)_3]$, and $(\mu-H)_4Ru_4(CO)_{10}(PPh_3)_2$.⁵ The NMR spectra showed that the hydride ligands scramble over the metal framework, and the spectral changes were interpreted in terms of an edge-terminal-edge scrambling mechanism. The previous compound (I) was prepared from the direct reaction of $(\mu$ -H)₄Ru₄(CO)₁₂ and diphos at 60 °C. Subsequently, we have found that in the presence of trimethylamine N-oxide substitution occurs at 25 $^{\circ}C^{6}$ but that

- This article constitutes part 4 of our series "Crystallographic Studies on Ruthenium Carbonyl Hydrides". For the previous contribution, see ref 2.
- (2) Part 3: Churchill, M. R.; Lashewycz, R. A. Inorg. Chem. 1978, 17, 1950.
- (3) (a) SUNY at Buffalo. (b) University of Illinois. (c) A. P. Sloan Foundation Fellow, 1978-1980; Camille and Henry Dreyfus Teacher-Scholar, 1978-1983.
- (4) Shapley, J. R.; Richter, S. I.; Churchill, M. R.; Lashewycz, R. A. J. Am. Chem. Soc. 1977, 99, 7384.
- (a) Wilson, R. D.; Wu, S. M.; Love, R. A.; Bau, R. Inorg. Chem. 1978, 17, 1271.
 (b) Knox, S. A. R.; Kaesz, H. D. J. Am. Chem. Soc. 1971, 93, 4594.

it leads to an isomeric product shown herein to be $(\mu$ -H)₄Ru₄(CO)₁₀(μ -diphos) (see II). In addition we now report

⁽⁶⁾ The ability of trimethylamine N-oxide to promote carbonyl substitution reactions under mild conditions is well documented. See: (a) Shvo, Y.; Hazum, E. J. Chem. Soc., Chem. Commun. 1975, 829. (b) Koell, V. J. Organomet. Chem. 1977, 133, 53. (c) Stuntz, G. F.; Shapley, J. R.; Pierpont, C. G. Inorg. Chem. 1978, 17, 2596. (d) Johnson, B. F. G.; Lewis, J.; Pippard, D. J. Organomet. Chem. 1978, 160, 263. (e) Blumer, D. J.; Barnett, K. W.; Brown, T. L. J. Organomet. Chem. 1978, 173, 71